MAT 343 Laboratory 2 Linear transformations and computer animation in MATLAB

Bruno D. Welfert

ARIZONA STATE UNIVERSITY
School of Mathematical & Statistical Sciences

Goals

In this laboratory session you learn how to

- Plot in MATLAB
- Implement linear transformations in MATLAB (rotation, reflection, scaling)
- Perform simple computer animation in MATLAB
- Use homogeneous coordinates to create more advanced computer animations
- Create AVI movie in MATLAB

Use plot to graph data/functions

```
x = 0:0.2:10; % 51 values 0,0.2,0.4,0.6,...,10.0
f = @(x)x.*sin(x)./(1+x); % inline function
% note .* and ./ for componentwise * and /
y = f(x); % evaluate f at list x
plot(x,y); % graph y data vs x data
plot(x,y,'o'); % use marker o without connecting points
z = sin(x); % evaluate sin at x values
plot(x,y,'o',x,z); % superpose 2 plots
T = [x;y]; % 2x51 matrix with x in row 1 and y in row 2
plot(T(1,:),T(2,:)); % plot 2nd row of T vs 1st row
```

It is also possible to do more sophisticated types of plots in MATLAB, including polar coordinates, three-dimensional surfaces, contour plots, ...

Example 1. Plot the triangle with vertices (-0.5, -1), (0, 1), (0.5, -1)

```
y = [-1, 1, -1]; % y data
T = [x;y]; % 2x3 matrix with x,y coordinates
T = [T, T(:,1)]; % repeat 1st point to close triangle
t = plot(T(1,:),T(2,:),'linewidth',3); % draw triangle
% t is handle to graphics object
axis equal; % guarantees 1-1 aspect ratio
axis([-2,2,-2,2]); % visualization window
grid on; % add reference grid
print -depsc triangle.eps; % or -dipeg90 triangle.jpg
```

x = [-0.5, 0, 0.5]; % x data

2D rotations, reflections, scaling

• The matrix of a rotation of angle θ in the plane is

$$A = \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• The matrix of a reflection in the plane w.r.t. line $y = x \tan \frac{\theta}{2}$ is

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta - \cos \theta \end{bmatrix}$$

• The matrix of a scaling in the plane by a factor s_x in the x-direction and s_y in the y-direction is

$$A = \begin{bmatrix} s_x & \\ & s_y \end{bmatrix}$$

• To apply A to $T = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ y_1 & y_2 & \cdots & y_N \end{bmatrix}$ simply multiply A and T AT = A * T:

The matrix AT contains the coordinates of the transformed points

Example 2. Rotate the triangle from Example 1 counterclockwise by 45°

Example 3. Reflect the triangle from Example 1 along the line y = x

```
delete t2; % delete rotated triangle from Example 2 hold on; ang = pi/2; % tan(ang/2)=1=slope of line => ang/2=pi/4 A = [cos(ang), sin(ang); sin(ang), -cos(ang)]; % reflection AT = A * T; % apply reflection to triangle t3 = plot(AT(1,:),AT(2,:),'m','linewidth',3); % in magenta hold off;
```


Example 4. Scale the triangle from Example 1 by $s_x = 2$ and $s_y = .5$

```
delete t3; hold on; sx = 2; sy = .5; % scaling factors in x and y directions A = [sx, 0; 0, sy]; % scaling matrix AT = A \star T; % apply scaling to triangle t4 = plot(AT(1,:),AT(2,:),'k','linewidth',3); % scaled in black hold off;
```


Combinations of Transformations

Transformations can be combined by successively applying each one

$$T \xrightarrow{A_1} A_1 T \xrightarrow{A_2} A_2 A_1 T \rightarrow \cdots$$

The resulting transformation is represented by

$$A = \cdots A_2 A_1$$

Note that the first transformation appears on the right of the product of the matrix representations of the individual transformations

Example 5. Scale the triangle from Example 1 horizontally by a factor 2, then rotate it by an angle $\theta = 45^{\circ}$.

```
delete t4; hold on; sx = 2; \ sy = 1; \ A1 = [sx, \ 0; \ 0, \ sy]; \ \% \ scaling \\ ang = pi/4; \ A2 = [cos(ang), -sin(ang); \ sin(ang), \ cos(ang)]; \ \% \ rot \\ AT = A2*A1*T; \ \% \ apply \ A1 \ then \ A2 \ to \ triangle \\ t5 = plot(AT(1,:),AT(2,:),'k','linewidth',3); \\ hold \ off;
```


Homogeneous coordinates

- What about rotations or scalings about a point other than the origin?
- What about reflections about lines not passing through the origin?
- What about translations?
- Homogeneous coordinates $\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{extend}} \begin{bmatrix} x \\ y \end{bmatrix}$
- The matrix of a standard transformations in homogeneous coordinates is

For example, to implement a rotation of angle $\frac{\pi}{2}$ about (1,0):

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \xrightarrow[=T(1,0)^{-1}]{} \begin{bmatrix} x-1 \\ y \\ 1 \end{bmatrix} \xrightarrow[]{} \frac{\text{Rot}(\frac{\pi}{2})}{1} \begin{bmatrix} -y \\ x-1 \\ 1 \end{bmatrix} \xrightarrow[]{} \frac{T(1,0)}{1} \begin{bmatrix} 1-y \\ x-1 \\ 1 \end{bmatrix}$$

```
delete t5; hold on; tx = 1; ty = 0; \\ A1 = [1,0,tx;0,1,ty;0,0,1]; \% translation \\ ang = pi/2; \\ A2 = [cos(ang),-sin(ang),0;sin(ang),cos(ang),0;0,0,1]; \% rotation \\ AT = A1*(A2*(A1\T)); \% (1,0)->(0,0), rotate, (0,0)->(1,0) \\ t6 = plot(AT(1,:),AT(2,:),'k','linewidth',3); \\ hold off;
```


close (avi);

```
avi = VideoWriter('triangle.avi'); avi.Quality = 50; open(avi);
writeVideo(avi, getframe);
N = 40; % number of frames for each transformation
tx = 1/N; ty = 0;
A1 = [1, 0, tx; 0, 1, ty; 0, 0, 1]; % small translation
ang = (pi/2)/N;
A2 = [\cos(ang), -\sin(ang), 0; \sin(ang), \cos(ang), 0; 0, 0, 1];
                                      % small rotation
for i = 1:N
    T = A1\T; % (1.0) -> (0.0) in N steps
    set(t, 'xdata',T(1,:), 'ydata',T(2,:));
    writeVideo(avi,getframe); pause(0.1);
end
for i = 1:N
    T = A2 \times T; % rotate 90 degrees in N steps
    set(t, 'xdata',T(1,:), 'ydata',T(2,:));
    writeVideo(avi,getframe); pause(0.1);
end
for i = 1:N
    T = A1 *T; % (0,0) - > (1,0) in N steps
    set(t,'xdata',T(1,:),'ydata',T(2,:));
    writeVideo(avi,getframe); pause(0.1);
end
```

Instructions for the problems

For each of the following problems:

- Create an m-file to store the MATLAB commands
- Copy and paste the m-file into a text document
- For Problems 1, 2, 3, include in the text document the pictures produced by MATLAB. Resize and crop the pictures so that they do not take up too much space
- If a question requires written answers, include them in the text file in the appropriate location
- Make sure you clearly label and separate all the questions
- For Problem 4 you do not need to include any picture. Instead include the submission data and time of your AVI movie

Let
$$f(x) = x^2 + \sin\left(\frac{1}{x}\right)$$

- a) Plot f for $0 < x \le 1$. Use an appropriate window in both x and y directions
- **b)** Superpose a plot of the derivative of *f*

Let
$$g(x) = \frac{f(x+h) - f(x)}{h}$$
 with $h = 10^{-8}$.

- c) Plot g for $0 < x \le 1$. Compare to b)
- **d)** What happens if instead $h = 10^{-15}$?

Problem 2

Consider the original triangle T. Perform the following transformations:

- a) Rotate T by an angle of 180°
- **b)** Reflect *T* about the line $y = x\sqrt{3}$
- c) Compose the transformations a) then b)
- d) Compose the transformations b) then a). Compare to c)
- e) Translate T by one unit in the positive x direction, then rotate T by an angle of 90° about (1,0)
- f) Determine and implement a transformation which brings back T to its original position from the result of e)

Problem 3

Consider the square S with vertices at (0,0), (1,0), (1,1), and (0,1). Perform the following transformations:

- a) Rotate S counterclockwise by an angle of 30° about (0,0)
- **b)** Translate S horizontally by one unit to the right
- c) Rotate S counterclockwise by an angle of 60° about (1,0)
- d) Compose the transformations a) then b) then c)
- e) Identify the transformation from d) and implement it directly with a single matrix

Problem 4

Create an AVI movie PB4—your name.avi implementing the transformations from Problem 3d) using N=40 steps for each of the 2 rotations and the translation.

- Use a MATLAB command like title ('my name') to include your name as a title of the figure used in the video
- Submit the resulting AVI file on Blackboard